

UTKAL INSTITUTE OF ENGINEERING \& TECHNOLOGY

DISCIPLINE: ETC	DISCIPLINE: $3^{\text {rd }} \text { Sem }$	NAME OF THE TEACHING FACULTY: Er.Jyoti Prakash Swain		
SUBJECT: DIGITAL ELECTRONICS	No of Days/Per week class allotted: 4 Class P/W(60)	Semester From Date:15/09/2022 To Date:22/12/2022 No. Of Weeks: 15		
WEEK	WEEK	WEEK	REMARKS	
$1^{\text {st }}$	$1^{\text {st }}$	Number System-Binary, Octal, Decimal, Hexadecimal Conversion from one system to another number system.	Date	Dean/Principal
	$2^{\text {nd }}$	Number System-Binary, Octal, Decimal, Hexadecimal Conversion from one system to another number system.		
	$3^{\text {rd }}$	Number System-Binary, Octal, Decimal, Hexadecimal Conversion from one system to another number system.		
	$4^{\text {th }}$	Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1's \& 2's complement of Binary numbers\& Subtraction using complements method		
$2^{\text {nd }}$	$1^{\text {st }}$	Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1's \& 2's complement of Binary numbers\& Subtraction using complements method		
	$2^{\text {nd }}$	Doubt Clear Class		
	$3^{\text {rd }}$	Doubt Clear Class		
	$4^{\text {th }}$	Doubt Clear Class		

$3^{\text {rd }}$	$1^{\text {st }}$	Digital Code \& its application \& distinguish between weighted \& non-weight Code, Binary codes, excess-3 and Gray codes.	
	$2^{\text {nd }}$	Digital Code \& its application \& distinguish between weighted \& non-weight Code, Binary codes, excess-3 and Gray codes.	
	$3^{\text {rd }}$	Digital Code \& its application \& distinguish between weighted \& non-weight Code, Binary codes, excess-3 and Gray codes.	
	$4^{\text {th }}$	Logic gates: AND,OR,NOT,NAND,NOR, Exclusive-OR, Exclusive-NOR-Symbol, Function, expression, truth table \& timing diagram	
$4^{\text {th }}$	$1^{\text {st }}$	Revision of last few class	
	$2^{\text {nd }}$	Revision of last few class	
	$3{ }^{\text {rd }}$		
	$4^{\text {th }}$	Universal Gates\& its Realisation	
$5^{\text {th }}$	$1^{\text {st }}$	Universal Gates\& its Realisation	
	$2^{\text {nd }}$	Boolean algebra, Boolean expressions, Demorgan's Theorems.	
	$3^{\text {rd }}$	Boolean algebra, Boolean expressions, Demorgan's Theorems.	
	$4^{\text {th }}$	Boolean algebra, Boolean expressions, Demorgan's Theorems.	
$6^{\text {th }}$	$1^{\text {st }}$	Revision of Last Class	
	$2^{\text {nd }}$	Revision of Last Class	
	$3^{\text {rd }}$	Represent Logic Expression: SOP \& POS forms	
	$4^{\text {th }}$	Represent Logic Expression: SOP \& POS forms	
	$1^{\text {st }}$	Karnaugh map (3 \& 4 Variables)\&Minimization of logical expressions, don't care conditions	

$7^{\text {th }}$	$2^{\text {nd }}$	Karnaugh map (3 \& 4 Variables)\&Minimization of logical expressions ,don't care conditions		
	$3^{\text {rd }}$	Karnaugh map (3 \& 4 Variables)\&Minimization of logical expressions , don't care conditions		
	$4^{\text {th }}$	Assignment		
$8^{\text {th }}$	$1^{\text {st }}$	Half adder, Full adder, Half Subtractor, Full Subtractor, Serial and Parallel Binary 4 bit adder.		
	$2^{\text {nd }}$	Half adder, Full adder, Half Subtractor, Full Subtractor, Serial and Parallel Binary 4 bit adder.		
	$3^{\text {rd }}$	Multiplexer (4:1), De- multiplexer (1:4), Decoder, Encoder, Digital comparator (3 Bit)		
	$4^{\text {th }}$	Multiplexer (4:1), De- multiplexer (1:4), Decoder, Encoder, Digital comparator (3 Bit)		
$9^{\text {th }}$	$1^{\text {st }}$	Seven segment Decoder (Definition, relevance, gate level of circuit Logic circuit, truth table, Applications of above)		
	$2^{\text {nd }}$	Seven segment Decoder (Definition, relevance, gate level of circuit Logic circuit, truth table, Applications of above)		
	$3^{\text {rd }}$	Revision Class		
	$4^{\text {th }}$	Principle of flip-flops operation, its Types		
$10^{\text {th }}$	$1^{\text {st }}$	Principle of flip-flops operation, its Types		
	$2^{\text {nd }}$	Clocked SR,D,JK,T,JK Master Slave flip-flops-Symbol, logic Circuit, truth table and applications		
	$3^{\text {rd }}$	C l o c k e d SR,D,JK,T,JK Master Slave flip-flops-Symbol, logic Circuit, truth table and applications		

$14^{\text {th }}$	$1^{\text {st }}$	Characteristics of Digital ICsPropagation Delay, fan-out, fanin, Power Dissipation ,Noise Margin ,Power Supply requirement \&Speed with Reference to logic families		
	$2^{\text {nd }}$	Characteristics of Digital ICsPropagation Delay, fan-out, fanin, Power Dissipation ,Noise Margin ,Power Supply requirement \&Speed with Reference to logic families		
	$3^{\text {rd }}$	Last class Discussion		
	$4^{\text {th }}$	Last class Discussion		
$15^{\text {th }}$	$1^{\text {st }}$	Last class Discussion		
	$2^{\text {nd }}$	Discussion Sample paper question		
	$3^{\text {rd }}$	Discussion Sample paper question		
	$4^{\text {th }}$	Discussion Sample paper question		

HOD

Chittankian Parida
DEAN

PRINCIPAL

